Weighted functional linear regression models for gene-based association analysis
نویسندگان
چکیده
Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P < 0.1 in at least one analysis had lower P values with weighted models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.
منابع مشابه
Kinetic modeling of methylene blue adsorption onto acid-activated spent tea: A comparison between linear and non-linear regression analysis
The kinetic study of methylene blue (MB) adsorption using acid-activated spent tea (AAST) as an adsorbent from aqueous solution with the aim of comparing linear and non-linear regression analysis methods was performed at varying initial MB concentrations (10-100 mg/l). Hence, spent tea leaves, which were activated using concentrated sulfuric acid, were prepared. The physicochemical characterist...
متن کاملProviding comprehensive control chart for monitoring of linear and nonlinear profiles using functional data analysis.
Considering profiles as functional variables, two control charts are proposed for their monitoring in phase II. Due to its conformity with the nature of real-world profiles, applying functional model leads to proposed control charts obtained through functional data analysis techniques with desired features. These include simplicity in calculation and possibility of using them for different prof...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملAssociation between the Functional Polymorphism of Vascular Endothelial Growth Factor Gene and Breast Cancer: A Meta-Analysis
The vascular endothelial growth factor (VEGF) gene single-nucleotide polymorphism involved in the regulation of the protein levels has been implicated in breast cancer. However, the published studies have produced contentious and controversial results. Herein, we performed a meta-analysis (from January to October 2013); to further evaluate the association between +936 C/T polymorphism and the r...
متن کاملNew Approach in Fitting Linear Regression Models with the Aim of Improving Accuracy and Power
The main contribution of this work lies in challenging the common practice of inferential statistics in the realm of simple linear regression for attaining a higher degree of accuracy when multiple observations are available, at least, at one level of the regressor variable. We derive sufficient conditions under which one can improve the accuracy of the interval estimations at quite affordable ...
متن کامل